Linear Transformations of Euclidean Topological Spaces. Part II

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Transformations of Euclidean Topological Spaces. Part II

For simplicity, we follow the rules: X denotes a set, n, m, k denote natural numbers, K denotes a field, f denotes an n-element real-valued finite sequence, and M denotes a matrix over RF of dimension n × m. One can prove the following propositions: (1) X is a linear combination of the n-dimension vector space over RF if and only if X is a linear combination of En T. (2) Let L2 be a linear comb...

متن کامل

Linear Transformations of Euclidean Topological Spaces

For simplicity, we adopt the following rules: X, Y denote sets, n, m, k, i denote natural numbers, r denotes a real number, R denotes an element of RF, K denotes a field, f , f1, f2, g1, g2 denote finite sequences, r1, r2, r3 denote real-valued finite sequences, c1, c2 denote complex-valued finite sequences, and F denotes a function. Let us consider X, Y and let F be a positive yielding partial...

متن کامل

Topological Logics over Euclidean Spaces

In this paper we prove some results on the computational complexity of standard quantifierfree spatial logics with the connectedness predicate interpreted over the Euclidean spaces R and R. Topological logics with connectedness. A topological logic is a formal language whose variables range over subsets of topological spaces, and whose non-logical primitives denote fixed topological properties ...

متن کامل

Small Inductive Dimension of Topological Spaces. Part II

In this paper n denotes a natural number, X denotes a set, and F1, G1 denote families of subsets of X. Let us consider X, F1. We say that F1 is finite-order if and only if: (Def. 1) There exists n such that for every G1 such that G1 ⊆ F1 and n ∈ CardG1 holds ⋂ G1 is empty. Let us consider X. Observe that there exists a family of subsets of X which is finite-order and every family of subsets of ...

متن کامل

Interpreting Topological Logics over Euclidean Spaces

makes the intuitively reasonable assertion that, if region r1 externally contacts region r2 and is a non-tangential proper part of region r3, then r2 either partially overlaps, or else is a proper part (tangential or non-tangential) of r3. This particular topological logic, known as RCC8, has been intensively analysed in the literature on qualitative spatial reasoning; see e.g., (Egenhofer and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Formalized Mathematics

سال: 2011

ISSN: 1898-9934,1426-2630

DOI: 10.2478/v10037-011-0017-2